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Abstract

Data from three subtests of the Head Start Measures Battery
were analyzed using principal components analysis and nonmetric
multidimensional scaling (MDS). Loadings on the first factor
were high and eigenvalues obtained from the principal components
analysis suggested that one, or possibly two, dimensions were
present in the data. On the other hand, loadings of rotated
principal components suggested that at least three factors
corresponding to the subtests were present. The structure was
clarified by MDS plots which showed that items were located in
distinct sectors corresponding to their subtest. However, items
having the highest IRT discrimination parameters were clustered
toward the center. This suggests that the measures have a strong
common factor as well as unique variance associated with each
subtest. Practically, this justifies both a common scale for all
subtests when an overall measure of achievement is needed and
individual subtest scaling when information on particular skills
is required. Agreement between principal components analysis and
MDS can be used to reinforce the validity of the principal
components model.

Introduction

Although many methods have been developed for determining

the underlying latent structure of a data set, no single

procedure has emerged which is satisfactory in all cases.

Hattie (1985) has presented an extensive review of procedures

used to examine the unidimensionality assumptions of latent

trait theory; many of these methodologies are unsatisfactory for

analysis in general situations because they rely on restrictive

assumptions (e.g., additivity of latent components,

distributional assumptions) which may not be appropriate. The

methodologies discussed by Hattie are used to test for uni-

dimensionality; they do not determine the nature and extent of

multidimensionality present in the data.

While factor analysis and principal components analysis

represent the most commonly used techniques for examining the
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latent structure of a data set, problems may be encountered in

their use. First, factor analytical techniques assume that the

latent components are additive. If the model is not

appropriate, conclusions regarding the latent structure of the

data set may be in error. Second, when dichotomized data are

factor analyzed, factors related to the marginal distributions of

the items (the item difficulties) may be present. Such

statistical artifacts can result from the type of correlation

coefficient used, or the type of data analyzed, but do not have

any theoretical meaning. Spurious influence of item difficulty

has been noted primarily when the phi correlation coefficient

(Lord and Novick, 1968) is used to form the correlation matrix

(Ferguson, 1941; McDonald and Ahlawat, 1974). Since the range of

the phi coefficient may be restricted because of the differences

in marginal distributions of the item pairs, substitution of the

tetrachoric correlation (Lord and Novick, 1968) has been

recommended. However, use of the tetrachoric correlation

coefficient requires that item pairs share a bivariate normal

distribution and that the probability of a chance correct

response be zero. Moreover, the tetrachoric correlation is

difficult to estimate and matrices of tetrachoric correlations

may be non-Gramian (contain one or more negative eigenvalues).

Finally, Guilford (1941) and Jones, Sabers, and Trosset (1987)

have noted the presence of difficulty-related factors even when

tetrachoric correlations were analyzed.
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Multidimensional scaling (MDS) is a technique which can be

used to assess dimensionality without recourse to the restrictive

assumptions of the techniques of factor analysis. MDS techniques

are based on a distance model. The algorithm attempts to locate

objects in a representational space of specified dimensionality

such that interpoint distances (measures of similarity or

dissimilarity which are input to the procedure) are reproduced as

faithfully as possible. The more closely the number of

dimensions in the representational space matches the number of

dimensions in the space which contains the items, the more

closely the approximated distances will match the original

distances. In nonmetric MDS, the scaling is carried out such

that only the rank orde\s of the interpoint distances are

preserved.
1$

The fit of the scaling is measured by a statistic

such as STRESS (Kruskal, 1964).

MDS avoids the additivity requirements of the factor

analytical model. Furthermore, input to the procedure may be any

type of distance measure. Unlike principal components or factor

analysis, correlation coefficients are not required. The

interpretation of the axes in the MDS representational space may

differ from that for principal components analysis where a

vector of responses is plotted for each case with axes

corresponding to items. The principal components form a

subspace with axes which correspond to linear combinations of the

items and which are often interpreted as latent variables. In

MDS, the items are data points which lie in a space of unknown
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dimensionality. A parsimonious representation of that space is

sought. The specified axes need not represent latent variables

and even if they do, they need not represent the same latent

variables obtained in the principal components analysis. Since

MDS is based on a distance model, any orientation of the axes in

the representational space preserves the distances, and their

origin is arbitrary.

MDS has been used to examine the structure of test data sets

(Koch, 1983; Korpi and Haertel, 1984; Thomas, 1984, 1985; Allen,

1987). It is especially useful for the case of dichotomous data

for which the models underlying classical or confirmatory factor

analytical techniques may be inappropriate. However, few

studies have explored the behavior of MDS with simulated

dichotomized data of known structure. Reckase (1981) examined

its effectiveness with one-, two-, three-, and nine-factor data

sets for 14 similarity coefficients with and without guessing

present. He used the proceCure to isolate sets of homogeneous

items in a two-dimensional representational space and found it

useful with simulated data. However, he found that MDS results

did not give the expected results for data taken from the Iowa

Tests of Educational Development. The reason for the

discrepancy between obtained and expected results was not clear.

Interpreting MDS Plots

The effectiveness of MDS in recovering the underlying

dimensionality of one-, two-, and three-factor data sets was

explored in a study prior to the current work (Jones et al.,
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1987). The study examined the effect of using margin-sensitive

(agreement1, phi, kappa) and margin-free (phi/phimax, Yule's Q,

and the tetrachoric correlation) similarity coefficients [a

discussion of these coefficients can be found in Reckase (1981)

and Jones et al. (1987)), Whereas Reckase (1981) examined the

effect of guessing on MDS results, Jones et al. varied item

discrimination (the correlation of the item with the latent

trait) and examined the behavior of the STRESS coefficient for

MDS solutions in different specified dimensionalities. Four

especially important findings emerged from their study:

1. MDS plots are variations on essentially the same plot

for all the similarity coefficients. An extra dimension is

required in the representational space to accommodate the

effect of item difficulty on margin-sensitive coefficients.

2. Orthogonal factors can be thought of as having a "center

of gravity" in space located equally distant from the center

of gravity for every other factor. Items related to the

same factor tend to cluster about the same center of

gravity. To allow for the equidistance criterion, k

dimensions are required in the representational space for

k+1 factors.

3. As the correlation of a unidimensional item with its

1 The agreement coefficient (Reckase, 1981) j.s the
proportion of people who give identical responses on paired
items. For a 2 x 2 matrix, it is the proportion of people in the
(0,0) and (1,1) cells.
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latent trait decreases, the distance of the item from its

center of gravity increases.

4. Items related to multiple factors are located in space

between the factors to which they are related.

Some amplification of the above conclusions may clarify the

results of the present study.

First, items tend to group in clusters according to the

factors to which they are related. If an item is related to a

single factor: it is grouped with other items related to the same

factor. Items with the highest item-latent trait correlations

are grouped at the center of the cluster. Items are arranged

around the cluster center in concentric circles (or spheres) in

order of decreasing correlation such that items with the lowest

correlations with the latent trait appear farthest from the

cluster center. Figure 1 (Jones et al., 1987) presents results

obtained from scaling a unidimensional set of 40 simulated items

with varying item-latent trait correlations. The matrix input to

the scal.Lng procedure was a matrix of Yule's Q coefficients

(Bishop, Fienberg, and Holland, 1975). Items numbered 1

correlated .9 with the single latent trait and appear at the

center of the graph. Those correlating .6 with the latent trait

are indicated with the number 2 and are scaled around the first

group of items. Items which correlated .3 with the latent trait

are indicated with the number 3 and appear on the outside of the

circle.
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If multiple factors are present in the simulated data (i.e.,

if some items are related to factor A, some items to factor B,

etc.), the cluster centers appear at equal distances from each

other. When three factors exist in the data, for instance,

groups of unidimensional items are positioned at the vertices of

an equilateral triangle. This configuration is necessary because

items related to one of the factors are no more related to a

second factor than they are to a third. For this reason, the

items should be located equally distant from the cluster centers

for the other two factors. In order to permit this

configuration, the representational space for MDS requires two

dimensions (assuming that margin-free coefficients are used for

the scaling). Figure 2 (Jones et al., 1987) presents MDS results

obtained for scaling a three-factor data set of 40 items using a

matrix of Yule's Q coefficients. All items correlate .9 with

one of the three factors. Items with (.9,0,0) factor loadings

(that is, a loading of .9 on the first factor and zero loadings

on the second and third factors) are indicated by the numeral 1

on the plot. The numerals 2 and 3 refer to items with (0,.9,0)

and (0,0,.9) factor loadings. As the number of factors in the

data increase, the number of dimensions required in the MDS

representational space increase. A scaling of a simulated four-

dimensional data set revealed that a pyramid (and therefore a

representational space of three dimensions) is required to

represent adequately the interpoint distances given by the

similarity matrix. The dimensions of the MDS representational

9
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space could not be interpreted as factors. The factors

corresponded to locations within the representational space.

Figure 3 (also from Jones et al., 1987), obtained for a

three-factor data set, presents results illustrating the fourth

conclusion described above. Items labeled 1, 2, and 3 have

factor loadings of (.9,0,0), (0,.9,0), and (0,0,.9) respectively.

Items labeled 4, 5, and 6 have factor loadings of (.7,.5,0),

(0,.7,.5), and (.5,0,.7). Items labeled 7 have factor loadings

of (.5,.5,.5). The first three sets of items form the vertices

of ar equilateral triangle. Since items numbered 4 are related

only to the first two factors, they are placed between the item

clusters corresponding to the first two factors, but somewhat

more closely to the first-factor items, corresponding to their

higher loading on the first factor. Similarly, item groups 5 and

6 are located between clusters related to the factors (2,3) and

(3,1), respectively. Finally, the items related tc all three

factors are clustered in the center of the plot, the only

location equally distant from all three factors.

Extension of Study

The purpose of the present study is to extend the results of

Jones et al. (1987) to actual test data and to show how MDS may

be effectively combined with traditional scaling and analysis

techniques to inform the researcher about the structure

underlying the data.
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Measures

Items from three of the six tests comprising the Head Start

Measures Battery or HSMB (Bergan, 1986) were analyzed using both

principal components analysis and MDS to determine the

appropriate structure underlying the data. The HSMB is a test

designed to measure pre-school development in six areas:

language, mathematics, nature and science, perception, reading,

and social development. It is individually administered to

children between three and five years of age who participate in

the Head Start Program. The test consists of free-response

items. Each subtest consists of three parts: a routing test

administered to every child, a level I test composed of easier

items administered to children who correctly answer fewer than a

preset number of items on the routing test, and a level II test

composed of more difficult items administered to children whose

correct responses on the routing test meet or exceed the

criterion number of items. The routing tests consist of items

which cover a wide range of difficulty and which generally

display moderate to high item discrimination parameters. The

Language, Mathematics, and Social scales were chosen for this

analysis since they represent three distinctly different content

areas. The routing tests were chosen because all children tested

on a given scale receive the routing items; therefore, no

selection for ability occurs on these items. The Language,

Mathematics, and Social routing tests contain, respectively, 9,

6, and 8 items. Because the items are individually administered

1.1
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to very young children, guessing is not generally considered to

be important and personal experience with scaling the tests has

shown that a two-parameter logistic model fits most items well.

Parameter estimates obtained using the Multilog scaling program

(Thissen, 1984) for a. .ems of the three routing tests are

presented in Table 1. Examination of the cha'-acteristics of the

scales using confirmatory factor analysis prior to this

investigation had suggested a separate factor for each subtest

(Bergen, rersonal communication, June 1986). However, a matrix

of intercorrelations of subtest scores for all six scales had

revealed correlations among the subscales ranging from .50 to

.65. This suggested the presence of a moderate to strong single

factor in the measures. Particular interest in the structure of

the test was prompted by a request from the national Head Start

Program who wished to refer low-scoring children for additional

evaluation. The fundamental problem col.cerned how to determine

what constituted a low score on the measures. After

consideration of the problem, the most appealing solution was to

rescale item..: from several subtests on a single scale using a

two-parameter model, to establish norms for ability levels for

six-month age grouping and to determine a cutting score fcr an

appropriate percentile for each age group represented. However,

if the items were rot unidimensional, placing them on a single

scale WOI° It be appropriate and the difficulty of determining

a crit.% 'eferral would be substantially increased.
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One issue related to the concept of unidimensionality should

be mentioned here. Any data set which contains random error

cannot, by definition, be truly unicimensional, since a dimension

is required to describe full/ the random error component.

However, in a reliable data set, the random error component is

small relative to the systematic component, so that it may be

neglected without causing substantial problems. Similarly, some

subsets of items may contain common effects which are small

relative to an overall systematic component. Again, such

components may possibly be ignored in favor of a unidimensional

scaling. The problem, therefore, may not really be whether the

item set is unidimensional, but whether it is sufficiently

unidimensional to permit accurate scaling estimates of item

parameters (see Hulin, Drasgow, and Parsons, 1983, pp. 105-108).

Subjects

The sample consisted of children who participated in the

Head Start Program and who received all Language, Mathematics and

Social routing items in Fall, 1985. The study was restricted to

include only children between the ages of 36 and 60 months, the

age range for which the scales are maximally effective. One

thousand subjects were randomly sampled from more than 17,000

children who received some or all of the HSMB scales.

13
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Data Analysis

Matrices of phi, tetrachoric correlation, agreement and

Yule's Q coefficients were constructed from the raw response

data. Principal components analyses were conducted on the

matrices of phi and tetrachorirt correlations using the FACTOR

module of the SYSTAT statistical package (Wilkinson, 1984) for

the IBM PC. Despite its name, FACTOR produces only principal

components analyses. Scree plots of eigenvalues were examined

for abrupt changes in slope. The first five principal components

were then rotated orthogonally. Unrotated and rotated loadings

were compared for similarity to the assumed factor structure.

Matrices of agreement, Yule's Q, and tetrachoric

coefficients were scaled using the SYSTAT MDS module. The

results of Jones et al. had previously suggested that these three

coefficients represented appropriate similarity measures for MDS.

The agreement coefficient was used because it appeared to be the

most appropriate coefficient for recognizing unidimensionality.

Reliable unidimensional item sets have a low STRESS value for a

one-dimensional representational space when the agreement

coefficient is used; this is not true for margin-free

coefficients. However, when data sets contain more than a single

factor, the presence of an additional dimension caused by item

ordering due to difficulty tends to cload the structure of the

MDS plot. Therefore, the magnitude of the agreement coefficient

was examined only to determine whether data were unidimensional.

Yule's Q was used because it is not affected by item difficulty

1.4
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and generally yields the same results as the tetrachoric

correlation, while being easier to compute. The tetrachoric

correlation was used as a basis for comparison with the principal

components analysis.

MDS analyses were conducted for representational spaces of

one through five dimensions, using the Kruskal scaling

algorithm. STRESS values were plotted against the number of

dimensions used in scaling and examined for abrupt changes in

slope. Two-dimensional item plots were examined to determine the

configuration of the points in each representational space.

Results

Principal Components Analyses

Table 2 presents eigenvalues corresponding to the first five

principal components for analyses of phi and tetrachoric

correlations. Both sets of eigenvalues suggest a strong fist

factor and a weaker second factor. Table 3 shows the unrotated

principal components loadings for the first five factors obtained

by analyzing the matrj-..: of phi coefficients. Except for the

second Mathematics item (K), all items load strongly on the

first principal component. The second principal component serves

primarily to differentiate the Language items from the remaining

items; the third principal component serves primarily to

differentiate the Mathematics items from the remaining items.

However, the magnitude of the third eigenvalue suggests that the

third principal component is not important. The loadings for the

orthogonally rotated components are presented in Table 4.

r) .: 15
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Examination of the rotated loadings for the five factors shows

that items P - T load most heavily on the first component, but

that the loadings for the three remaining items from the Social

scale are substantially smaller. Items A - G, all Language

items, load heavily on the second component, while the two

remaining Language items, H and I, have their heaviest loading on

the fifth principal component. Items J - 0, all Mathematics

items, load most heavily on the third principal component,

although item K tends to load less heavily than the other items.

Tables of unrotated and rotated principal components

loadings obtained from analysis of the matrix of tetrachoric

correlations appear similar to those obtained for phi

correlations. The loadings are presented in Tables 5 and 6.

Thus the principal components analysis gives apparently

conflicting results. Eigenvalues suggest that only two factors,

one substantially more important than the other, are present in

the data. However, the magnitude of the loadings on the first

principal component suggest that the data might be

unidimensional, while the magnitude of the loadings on the

rotated orthogonal factors suggest that as many as five factors

might be present in the data.

MDS Analyses

STRESS values obtained for the 15 MDS analyses are presented

in Table 7. An appropriate dimensionality in MDS may be chosen

by determining the number of dimensions in the representational

space at which an abrupt change in slope occurs. (The technive

16
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is analogous to examination of scree plots in principal

components or factor analysis, but the appropriate number of

principal components is given by the number of eigenvalues prior

to the break in the plot.) An MDS representational space may

also be chosen when the STRESS value is sufficiently low, but the

criteria for this are not always clear. Kruskal and Wish (1978)

suggest that values of .10 - .15 may be acceptably low, but the

value depends on the type of similarity coefficient input to the

scaling procedure. The plots for the HSMB do not contain a

clear break at any dimensionality, although values appear to be

acceptably low for either a two- or three-dimensional

representational space when items are scaled using Yule's Q or

tetrachoric coefficients.

Examination of the two-dimensional MDS plot for the routing

items reveals substantial information regarding the

characteristics of the items. Figure 4 shows the results

obtained when items were scaled using a Yule's Q similarity

matrix for a two-dimensional representational space. Items tend

to be grouped in non-overlapping regions corresponding to the

subscale (Language, Mathematics, or Social) to which they

belong. Language items (identified with the letters A-I)

appear on the left-hand side of the plot; Mathematics items are

located below the Social items on the right-hand side of the

plot. Such a structure would be expected from the second

conclusion of the Jones et al. study; that is, that items related

to the same factor tend to cluster about the same center of

17
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gravity. One item (K) from the Mathematics subscale appears

quite different from the rest; although it is scaled in the

sector of the plot corresponding to the remaining Mathematics

items, it is widely separated from those items. As suggested by

the third conclusion of Jones et al., this suggests that the item

is poorly correlated with the latent trait. The structure of the

items, in general, suggests that the subtests consist of shared

variance which is unique to the individual subtests. The lack of

strong differentiation along the second dimension in the

representational space also suggests that the items might be

strongly related to a common factor, since items which are

related to the same common factor tend to cluster about the same

center.

The MDS results help to clarify the reasons for the apparent

conflict in the principal components analyses. The strong common

element corresponds to the high loadings on the first factor of

the unrotated principal components analysis. The unique factors

correspond to the single-factor loadings on the rotated principal

components.

The MDS plot also helps to understand the item parameter

estimates presented in lable 1. The large distance of item K

from the centroid of the mathematics items suggests that its item

discrimination estimate is indicative of a substantial amount of

random error. This is confirmed by items H and I which have the

highest discrimination parameters of the Language items; they

are scaled close to the center of the diagram. Similarly, items

is
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M, N, and 0, with the highest discrimination values of the

Mathematics items, and items P, Q, T, U, and V, with the highest

discrimination values of the Social items are also scaled toward

the interior of the plot. In general, as the discrimination

decreases, items are scaled farther away from the center, but

within a region corresponding to their subtest. The closeness

of the cluster centers indicates that the items contain a strong

common element; the fact that the diagram can be divided into

regions corresponding to each subtest suggests that each subtest

also contains an additional unique element.

The structure of the item clusters in MDS space suggests

that an appropriate model for item response should include eTi,

the ability of the jth individual on the common latent trait T

shared by all tests, ekj, the ability on the latent trait

measured by the kth subscale, and eij, the error (or unique

variance component) on the ith item. In practical terms, the

HSMB may be scaled in two different ways to meet two different

needs. Separate scalings for the :ubtests appropriately reflect

the presence of unique latent traits present in the separable

cluster domains. Yet, a single scaling of all items can also be

used to gauge overall performance because of the presence of a

strong common factor.

The appropriateness of the two-parameter logistic model for

these data can not be determined conclusively from this analysis.

However, the strong agreement between the MDS results (which were

not subject to the linearity restriction nor to a particular

19
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parametric model), the principal components analysis (which was

subject to the linearity restriction but not to a particular

parametric model) and the item response theory analysis (which

was subject to both the restriction and the model) suggest that

the model is indeed appropriate.

Conclusions

Each methodology of dimensionality analysis has adherents

and detractors and probably no single technique is effective in

and appropriate for all situations. This study shows by example

that a variety of methods can be used synergistically to examine

the structure of real data for practical ends. Nonmetric MDS, a

rarely used technique, can be particularly useful because of its

graphic display of data structures and its freedom from

restrictive assumptions. On the other hand, principal

components and factor analysis yield well-defined, quantitative

information under restrictive linearity conditions. The two

approaches can be used together to complement each other and to

extract maximal information regarding the underlying structure of

the data. Substantial agreement between the methodologies can be

used to suggest the appropriateness of the principal components

model.

20
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Table 1. IRT Parameter Estimates for HSMB Data.

Item ID Test a value b value

A Lang 0.937 -0.247
B Lang 1.147 1.711
C Lang 0.872 -0.922
D Lang 0.931 0.588
E Lang 1.212 -0.022
F Lang 1.336 0.374
G Lang 1.372 0.777
H Lang 2.209 0.160
I Lang 2.451 0.102

J Math 1.017 -0.508
K Math 0.503 -1.149
L Math 0.959 -0.326
M Math 1.973 0.310
N Math 2.349 0.391
0 Math 1.758 0.928

P Soc 1.577 0.139
Q Soc 2.260 -0.225
R Soc 1.442 0.543
S Soc 1.257 -1.007
T Soc 1.928 -0.688
U Soc 1.679 -0.488
V Soc 2.179 -0.765
W Soc 0.953 0.739



Table 2. First Five Eige,nvahles for Principal Components

Analyses of Phi and Tetrachoric Correlation Coefficients. HSMB

Data.

Coefficient Eigenvalues

1 5.398 2.101 1.392 1.181 1.165

Tetrachoric 8.090 2.704 1.448 1.213 1.189
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Table 3. Unrotated loadings for principal components analysis of
HSMB data (phi coefficients).

1 2 3 4 5

A 0.423 -0.457 -C.013 -0.149 0.263
B 0.354 -0.421 0.097 -0.188 0.150
C 0.468 -0.396 -0.150 -0.050 0.096
D 0.394 -0.461 -0.088 -0.208 0.340
E 0.491 -0.472 -0.201 0.144 -0.166
F 0.483 -0.421 -0.208 0.193 -0.126
G 0.458 -0.402 0.065 0.152 -0.050
H 0.485 -0.155 0.197 0.013 -0.613
I 0.519 -0.114 0.244 0.007 -0.518
J 0.456 0.253 0.325 0.454 0.064
K 0.239 0.087 0.175 0.107 0.158
L 0.470 0.172 0.264 0.463 0.097
M 0.572 0,033 0.295 -0.042 0.271
N 0.553 0.165 0.409 -0.083 0.198
0 0.504 -0.001 0.345 -0.057 0.113
P 0.456 0.149 -0.246 -0.008 -0.072
Q 0.564 0.257 -0.404 0.031 -0.041
R 0.580 0.297 -0.269 0.135 0.120
S 0.580 0.275 -0.406 0.058 -0.025
T 0.538 0.326 -0.325 0.169 0.143
U 0.490 0.281 0.039 -0.476 -0.199
V 0.535 0.334 0.063 -0.432 -0.089
W 0.377 0.265 0.029 -0.296 0.060
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Table 4. Rotated loadings for principal components analysis of
HSMB data (phi coefficients).

1 2 3 4 5
A 0.034 -0.677 0.107 -0.093 -0.008
B -0.077 -0.571 0.095 -0.143 -0.088
C 0.229 -0.593 0.016 -0.020 -0.135
D 0.057 -0.714 0.046 -0.109 0.093
E 0.262 -0.57J6 -0.002 0.149 -0.417
F 0.294 -0.498 0.039 0.177 -0.374
G 0.085 -0.474 0.212 0.088 -0.342
H 0.067 -0.110 0.100 -0.185 -0.783
I 0.068 -0.122 0.186 -0.223 -0.712
J 0.220 0.086 0.705 0.043 -0.185
K 0.066 -0.059 0.346 -0.063 0.020
L 0.241 -0.001 0.670 0.090 -0.170
M 0.110 -0.312 0.534 -0.309 -0.015
N 0.059 -0.170 0.583 -0.414 -0.055
0 0.019 -0.248 0.464 -0.303 -0.142
P 0.479 -0.103 0.060 -0.178 -0.142
Q 0.701 -0.092 0.064 -0.188 -0.103
R 0.653 -0.088 0.271 -0.146 -0.003
S 0.724 -0.086 0.093 -0.177 -0.095
T 0.689 -0.054 0.247 -0.099 0.044
U 0.241 -0.029 0.026 -0.694 -0.214
V 0.280 -0.036 0.133 -0.694 -0.133
W 0.221 -0.046 0.139 -0.484 0.021
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Table 5. Unrotated loadings for principal components analysis of
HSMB data (tetrachoric coefficients).

1 2 3 4 5

A 0.519 -0.523 -0.012 -0 '91 0.142
B 0.503 -0.528 -0.095 -0.267 0.009
C 0.589 -0.467 0.179 -0.071 0.075
D 0.487 -0.523 0.104 -0.357 0.195
E 0.591 - .514 0.190 0.265 -0.056
F 0.587 -0.453 0.211 0.300 0.019
G 0.577 -0.439 -0.095 0.192 0.038
H 0.583 -0.153 -0.215 0.286 -0.552
I 0.624 -0.102 -0.265 0.222 -0.471
J 0.546 0.306 -0.405 0.304 0.267
K 0.299 0.108 -0.235 -0.033 0.213
L 0.561 0.205 -0.326 0.316 0.313
M 0.696 0.057 -0.280 -0.209 0.183
N 0.685 0.223 -0.373 -0.190 0.087
0 0.665 0.037 -0.306 -0.100 0.025
P 0.571 0.172 0.264 0.046 -0.071
Q 0.,677 0.276 0.405 0.088 -0.001
R 0.690 0.322 0.258 0.076 0.182
S 0.702 0.296 0.391 0.105 0.032
T 0.650 0.352 0.308 0.095 0.235
U 0.579 0.313 0.043 -0.289 -0.399
V 0.632 0.374 0.009 -0.311 -0.268
W 0.468 0.322 0.055 -0.312 -0.104
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Table 6. Rotated loadings 'IT principal component:: analysis of
HSMB data (tetrachoric coeft-ients).

1 2 3 4 5

A 0.027 -0.781 -0.136 -0.136 -0.034
B -0.055 -0.734 -0.120 -0.179 -0.154
C 0.266 -0.711 -0.054 -0.036 -0.168
D 0.079 -0.808 -0.060 -0.137 0.07E
E 0.330 -0.620 -0.019 0.164 -0.449
F 0.385 -0.578 -0.052 0.203 -0.398
G 0.148 -0.566 -0.260 0.103 -0.392
H 0.107 -n.185 -0.138 -0.218 -0.827
I 0.109 -0.196 -0.234 -0.266 -0.752
J 0.253 0.056 -0.781 -0.014 -0.207
K 0.063 -0.089 -0.425 -0.099 0.027
L 0.289 -0.044 -0.733 0.056 -0.188
M 0.178 -0.366 -0.582 -0.368 -0.059
N 0.158 -0.196 -0.638 -0.465 -0.121
0 0.141 -0.299 -0.517 -0.345 -0.228
P 0.556 -0.144 -0.101 -0.244 -0.179
Q 0.771 -0.129 -0.124 -0.246 -0.137
R 0.719 -0.124 -0.330 -0.208 -0.033
S 0.792 -0.126 -0.169 -0.237 -0.132
T 0.755 -0.091 -0.315 -0.163 0.025
U 0.318 -0.051 -0.077 -0.710 -0.253
V 0.360 -0.059 -0.203 -0.712 -0.:1,64
W 0.308 -0.057 -0.164 -0.556 0.009
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Table 7. MDS Stress Values for Three Similarity Coefficients.
HSMB Data.

Coefficient

MDS STRESS Values*

Number of Dimensions

1 2 3 4 5

Agreement 28690 15251 10867 06558 04702
Yule's Q 36696 17250 11813 08263 06413
Tetrachoric 36423 16807 11524 08160 06422

* Leading decimal points omitted
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Figure 1. MDS Plot for unidimensional simulated data set,
Yule's Q similarity matrix.
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